
Throwing objects with collaborative manipulators
using minimum-jerk trajectories

Giorgio Simonini1,2, Riccardo Di Majo1, Lorenzo Boccalini1, Matteo Guerci1,
Antonio Bicchi1,3, Paolo Salaris1

Abstract—Recently, throwing is gaining even more research
interest, especially in logistics, where goods have to be moved
efficiently. The throwing approach is difficult because it requires
precision in a dynamic task. In this work, we consider the
problem in both joint and cartesian space. In joint space, we
use an optimization procedure to obtain a trajectory to follow,
maximizing the throwing distance. In task space, we use a
cartesian controller to throw in a desired position. In both
cases, minimum-jerk trajectories are used to have smooth signals
and deal with robot constraints, usually present in collaborative
robots. The methods are tested on simulations and experiments
on the 7 d.o.f Franka Emika Panda.

I. INTRODUCTION

In logistics, throwing objects has been found to be a more
effective technique in several situations. For example, it could
be more efficient than the pick-and-place action because the
robot does not stop for the placing phase. The European
project Darko wants to investigate and put into practice
this idea by employing a mobile platform to streamline the
movement and distribution of commodities. Human being uses
throwing many times in their life, i.e. throwing objects into the
recycle bin, or moving them quickly from one location to an-
other. As usual, it could give inspiration; authors in [1],[2] use
the kinetic chain approach to generate the throwing motion.
In general, robotic movement can be designed in cartesian or
joint space. The former is more intuitive but not relies on
the structure of the robot. The latter is difficult to study but
permits usually more robust results. In [3] a nonprehensile
throwing on a 2-D surface is developed. In [4] the throwing is
used in a recycling factory with a cartesian approach. Authors
in [5] solve a nonlinear optimization problem to generate the
joint-level motion. Recently, tossingBot in [6] obtain visibility
thanks to a learning-based architecture that performs throws
with different objects.
In this work, we investigate the throwing problem with the
purpose of maximum distance by a joint-level approach, and
with precise throwing in a cartesian space. Sec. III define the
two throwing problems. In Sec. IV-A the problem is solved in
joint-space, using an optimization. In Sec. IV-B the solution
is obtained in task space using a cartesian controller. The

This work was supported in part by the European Union’s Horizon 2020
Research and Innovation Program under Grant Agreements No. 101017274
(Darko) and in part by the Ministry of University and Research (MUR) in the
framework of the FoReLab and CrossLab projects (Department of Excellence).

1Dipartimento di Ingegneria dell’Informazione e Centro di Ricerca “Enrico
Piaggio”, Università di Pisa, Largo Lucio Lazzarino 1, 56126 Pisa, Italy

2Italian Doctorate in Robotics and Intelligent Machines
3Soft Robotics for Human Cooperation and Rehabilitation, Fondazione

Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
giorgio.simonini@phd.unipi.it

Fig. 1. Throwing task, from an initial position to a desired point, or maximum
distance

work is validated on Sec. V on a 7 d.o.f. Panda manipulator.
Conclusion on Sec. VI give some result summary and possible
future works.

II. MINIMUM-JERK TRAJECTORY

The minimum-jerk trajectory from the time t = 0 to the
time tr on a variable s is created from the minimization of the
cost function ∫ tr

0

∥ ...
s (t)∥dt. (1)

That leads to the constraint s(6) = 0. The final motion is a 5th-
order spline created imposing the initial and final conditions.

III. PROBLEM DEFINITON

In this work, we take two types of problems: a maximum
distance and a precise throw. In both cases, the projectile
motion without air friction is considered as flying model. Let
p(t) = (x(t), y(t), z(t)) ∈ R3 be the object center and ξ the
end-effector position. Consider that ξ(t) = p(t) ∀t < tr. Robot
starts in configuration q0 at the time t = 0, release the object
in qr at time tr and stops in qf at time tf. The point reached
by the object is obtained from the flying kinematics, i.e.

x(t) = x(tr) + ẋ(tr)(tf − tr),

y(t) = y(tr) + ẏ(tr)(tf − tr),

z(t) = z(tr) + ż(tr)(tf − tr)− g(tf − tr)
2,

(2)

where g ∈ R is the gravity acceleration. The final time tf is
the time in which the object touches the desired height, and
it is

tf = tr +
1

g

(
żr +

√
żr

2 + 2g(zr − zd

)
. (3)

Collaborative robots like Franka have often limits in veloc-
ity, accelerations and also jerks. The use of minimum-jerk
movements permits to have smooth behavior and to deal
with such constraints. The trajectory is composed of two

2023 I-RIM Conference
October 20-22, Rome, Italy
ISBN: 978-88-945805-4-9
10.5281/zenodo.10722456

54



phases: acceleration and brake. The acceleration brings the
end-effector to the desired speed. The brake stops the robot’s
motion. The two problems are described in Sec. III-A and
III-B.

A. Maximum distance throwing
The request in this problem is to reach the maximum

distance among the x axis by some control input u. The
problem is formulated as

max
u

x(tf), (4)

respecting the manipulator limits, i.e.

qMIN < q < qMAX, ξ̇MIN < ξ̇ < ξ̇MAX,

q̇MIN < q̇ < q̇MAX, τMIN < τ < τMAX,

q̈MIN < q̈ < q̈MAX, τ̇MIN < τ̇ < τ̇MAX.

(5)

B. Precise position throwing
In this case, the object has to reach the desired position

pd = (xd, yd, zd), i.e.

x(tf) = xd, y(tf) = yd, z(tf) = zd (6)

There is no direct need for optimization since the end-effector
velocity and position influence directly the throw. Indeed, the
range equation is

d =
v cos(θ)

g

(
v sin(θ) +

√
v2 sin2(θ) + 2gh

)
(7)

where d is the distance, v is the speed, θ is the throwing
angle and h is the height difference.

IV. PROBLEM SOLUTION

The main point of the solution is to create the desired motion
with minimum-jerk trajectories. In the two problems, a low-
level controller is developed and the trajectory is fed to it. The
controller in both cases is a computed torque in the joints and
cartesian space respectively.

A. Joint-space motion
The minimum-jerk trajectory is defined by initial and final

points (q0, qf), velocities (q̇0, q̇f), accelerations (q̈0, q̈f) and
time of execution tr. In the nonlinear optimization problem
(4), free variables are final joint position, velocity and time.
For this reason, u = (qf, q̇f, tr). The small set of decision
variables makes optimization fast. Initial-guess is chosen
from an initial sampling of the configuration space. The
dataset of configurations (qr, q̇r) is created offline and for
each one a throwing position is associated. Then, starting
from the farthest distance, the trajectory is created and the
first one that does not violate robot constraints is kept as
the initial guess. The object distance is obtained from each
configuration by forward kinematics ξ̇ = Jq̇ and law (2). Then
the optimization procedure refines the solution to find the
best release configuration in order to throw. The manipulator
brake phase is generated as a constant deceleration and the
final end-effector position is considered in the optimization
as a constraint.

B. Cartesian-space motion
In this case, the robot is moved by a cartesian trajectory.

First, the vertical plane containing the initial point p0 and
the desired point pd is created. Then, a sphere in the task
space, centered on the robot, is defined as a safe region to
throw. Throwing inside that sphere has no sense because the
object could directly be dropped. The intersection between the
plane and the sphere provides possible throwing points. The
point that requires less velocity, using the optimal throwing
angle, is chosen for the throw. The optimal throwing angle
depends on the height difference between starting and desired
points and it is obtained numerically from the range equation
(7). The trajectory from the initial to the release point is a
minimum-jerk with the determined final configuration and a
reasonable time tr. The end-effector orientation is chosen with
the palm aligned to the velocity vector, and it is interpolated
using a SLEPR. The final cartesian trajectory is provided to
the controller.

V. VALIDATION

We validate the method on simulations and experiments on
a 7 d.o.f. robot Franka Emika Panda. The use of minimum-
jerk trajectories leads to smooth behavior and it permits to
not violate limits on jerk and torque derivative on the robot.
In the maximum distance task, the robot reaches a distance of
1.67m in simulation and 1.5m in the real robot. In the precise
throwing, the robot has an error of 10cm on about twenty
trials. Experiment and simulation material is available online
1.

VI. FUTURE WORK

One of the difficult points is to coordinate the gripper to
open at the right time and it causes the majority of the error.
In this regard, a study in this direction could be made with
the use of AI and learning methods.

REFERENCES
[1] T. Senoo, A. Namiki, and M. Ishikawa, “High-speed throwing motion

based on kinetic chain approach,” in 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, ISSN: 2153-0866, Sep.
2008, pp. 3206–3211.

[2] S. Ichinose, S. Katsumata, S. Nakaura, and M. Sampei, “Throwing
motion control experiment utilizing 2-link arm passive joint,” in 2008
SICE Annual Conference, Aug. 2008, pp. 3256–3261.

[3] A. Pekarovskiy and M. Buss, “Optimal control goal manifolds for planar
nonprehensile throwing,” in 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, ISSN: 2153-0866, Nov. 2013, pp. 4518–
4524.

[4] H. Chen, B. Zhang, and T. Fuhlbrigge, “Robot throwing trajectory plan-
ning for solid waste handling,” in 2019 IEEE 9th Annual International
Conference on CYBER Technology in Automation, Control, and Intelli-
gent Systems (CYBER), ISSN: 2379-7711, Jul. 2019, pp. 1372–1375.

[5] F. Lombai and G. Szederkenyi, “Throwing motion generation using
nonlinear optimization on a 6-degree-of-freedom robot manipulator,”
in 2009 IEEE International Conference on Mechatronics, Apr. 2009,
pp. 1–6.

[6] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, Tossing-
Bot: Learning to throw arbitrary objects with residual physics, Issue:
arXiv:1903.11239, May 30, 2020. arXiv: 1903.11239[cs,stat].

1https://drive.google.com/drive/folders/1A3Arts
rZQLW3ssIC9Vrpc5Vcva6ZI1J?usp=sharing

55


